Human papillomavirus (HPV) infections account for several human cancers. There is an urgent need to develop therapeutic vaccines for targeting preexisting high-risk HPV (such as HPV 16 and 18) infections and lesions, which are insensitive to preventative vaccines. In this study, we developed a lipid nanoparticle-formulated mRNA-based HPV therapeutic vaccine (mHTV), mHTV-02, targeting the E6/E7 of HPV16 and HPV-18. mHTV-02 dramatically induced antigen-specific cellular immune response and robust memory T-cell immunity in mice, besides significant CD8 + T-cell infiltration and cytotoxicity in TC-1 tumors expressing HPV E6/E7, resulting in tumor regression and prolonged survival in mice. Moreover, evaluation of routes of administration found that intramuscular or intratumoral injection of mHTV-02 displayed significant therapeutic effects. In contrast, intravenous delivery of the vaccine barely showed any benefit in reducing tumor size or improving animal survival. These data together support mHTV-02 as a candidate therapeutic mRNA vaccine via specific administration routes for treating malignancies caused by HPV16 or HPV18 infections.