An integrated magneto-opto-fluidic biosensor for rapid on-chip assay of respiratory viruses of livestock.
Qinming ZhangGaurav RawalJingjing QianHussam IbrahimJianqiang ZhangLiang DongMeng LuPublished in: Lab on a chip (2022)
Respiratory disease is one of the most important causes of economic loss in swine production. In the USA, porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) are currently the top two primary viruses causing swine respiratory diseases. The commonly used PCR-based virus detection methods require virus extraction, nucleic acid purification, and detection, which are relatively time-consuming and expensive. This work reports an integrated magneto-opto-fluidic (iMOF) platform, in which antibody functionalized magnetic nanoparticles (MNPs) can enable efficient enrichment of multiple swine respiratory viruses and a photonic crystal (PC) biosensor can transduce the amount of captured MNP-virus nanoparticles to the change of their reflection signatures. Owing to the high refractive index of Fe 2 O 3 MNPs, the use of MNPs can significantly enhance the PC sensor output. The proof-of-concept validation involves using antibody-functionalized MNPs to recognize IAV and PRRSV and transferring the formed MNP-virus conjugates onto the surface of the PC biosensors to quantify these viruses. The iMOF platform offers a high sensitivity of 3.5 TCID 50 mL -1 and 5.9 TCID 50 mL -1 for detecting IAV and PRRSV, respectively, and a rapid turnaround within one hour, including the MNP-virus conjugation, enrichment, and detection. The on-chip virus platform has a great potential for in-field surveillance of viral infections.