Login / Signup

Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS.

Tomoko HirokawaYixiao ZouYuji KuriharaZhaoxin JiangYusuke SakakibaraHiromu ItoKengo FunakoshiNobutaka KawaharaYoshio GoshimaStephen M StrittmatterKohtaro Takei
Published in: Scientific reports (2017)
Axonal regeneration in the adult mammalian central nervous system is limited in part by the non-permissive environment, including axonal growth inhibitors such as the Nogo-A protein. How the functions of these inhibitors can be blocked remains unclear. Here, we examined the role of LOTUS, an endogenous Nogo receptor antagonist, in promoting functional recovery and neural repair after spinal cord injury (SCI), as well as axonal regeneration after optic nerve crush. Wild-type untreated mice show incomplete but substantial intrinsic motor recovery after SCI. The genetic deletion of LOTUS delays and decreases the extent of motor recovery, suggesting that LOTUS is required for spontaneous neural repair. The neuronal overexpression of LOTUS in transgenic mice promotes motor recovery after SCI, and recombinant viral overexpression of LOTUS enhances retinal ganglion cell axonal regeneration after optic nerve crush. Thus, the level of LOTUS function titrates axonal regeneration.
Keyphrases
  • optic nerve
  • stem cells
  • spinal cord injury
  • optical coherence tomography
  • wild type
  • cell proliferation
  • wound healing
  • sars cov
  • single cell
  • gene expression
  • type diabetes
  • skeletal muscle
  • cerebrospinal fluid