A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
Javier Jiménez-LamanaLucile MariglianoJoachim AlloucheBruno GrasslJoanna SzpunarStéphanie ReynaudPublished in: Analytical chemistry (2020)
A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (<5% error). Polystyrene (PS) particle models with controlled surface functionalization mimicking the nanoplastics formed during natural degradation of plastic debris were used for the method development. The nanoplastic number concentration quantification limit was calculated at 8.4 × 105 NPTs L-1 and the calibration graph was linear up to 3.5 × 108 NPTs L-1. The method was applied to the analysis of nanoplastics of up to 1 μm in drinking, tap, and river water. The minimum detectable and quantifiable size depended on the degree of functionalization and the surface available for labeling. For a fully functionalized nanoplastic, the lower size detectable by this strategy is reported as 135 nm. In this study, authors use the recommendation for the definition of nanoplastics as plastic particles with sizes ranging between 1 nm and 1 μm, although it has not been accepted by a dedicated organization.