Login / Signup

First report on soil ecotoxicity prediction against Folsomia candida using intelligent consensus predictions and chemical read-across.

Rahul PaulMainak ChatterjeeKunal Roy
Published in: Environmental science and pollution research international (2022)
Soil invertebrates serve as an outstanding biological indicator of the terrestrial ecosystem and overall soil quality, considering their high sensitivity when compared to other indicators of soil quality. In this study, the available soil ecotoxicity data (pEC50) against the soil invertebrate Folsomia candida (C. name: Springtail) (n = 45) were collated from the database of ECOTOX (cfpub.epa.gov/ecotox) and subjected to QSAR analysis using 2D descriptors. Four partial least squares (PLS) models were built based on the features selected through genertic algorithm followed by the best subset selection. These four models were then used as inputs for Intelligent Consensus Predictor version 1.2 (PLS version) to get the final consensus predictions, using the best selection of predictions (compound-wise) from four "qualified" individual models. Both internal and external validations metrics of the consensus predictions are well- balanced and within the acceptable range as per the OECD criteria. The consensus model was found to be better than the previous developed models for this endpoint. Predictions were also made using the Chemical Read-across approach, which showed even better external validation metric values than the consensus predictions. From the selected features in the QSAR models, it has been found out that molecular weight and presence of a di-thiophosphate group, electron donor groups, and polyhalogen substitutions have a significant impact on the soil ecotoxicity. The soil ecotoxicological risk assessment of organic chemicals can therefore be prioritized by these features. The models developed from diverse structural organic compounds can be applied to any new query compound for data gap filling.
Keyphrases
  • risk assessment
  • plant growth
  • clinical practice
  • machine learning
  • molecular dynamics
  • emergency department
  • biofilm formation
  • pseudomonas aeruginosa
  • candida albicans
  • psychometric properties
  • water soluble