Login / Signup

Infection of Epstein⁻Barr Virus in Type III Latency Modulates Biogenesis of Exosomes and the Expression Profile of Exosomal miRNAs in the Burkitt Lymphoma Mutu Cell Lines.

Asuka NanboHarutaka KatanoMichiyo KataokaShiho HoshinaTsuyoshi SekizukaMakoto KurodaYusuke Ohba
Published in: Cancers (2018)
Infection of Epstein⁻Barr virus (EBV), a ubiquitous human gamma herpesvirus, is associated with various malignancies in B lymphocytes and epithelial cells. EBV encodes 49 microRNAs in two separated regions, termed the BART and BHRF1 loci. Although accumulating evidence demonstrates that EBV infection regulates the profile of microRNAs in the cells, little is known about the microRNAs in exosomes released from infected cells. Here, we characterized the expression profile of intracellular and exosomal microRNAs in EBV-negative, and two related EBV-infected Burkitt lymphoma cell lines having type I and type III latency by next-generation sequencing. We found that the biogenesis of exosomes is upregulated in type III latently infected cells compared with EBV-negative and type I latently infected cells. We also observed that viral and several specific host microRNAs were predominantly incorporated in the exosomes released from the cells in type III latency. We confirmed that multiple viral microRNAs were transferred to the epithelial cells cocultured with EBV-infected B cells. Our findings indicate that EBV infection, in particular in type III latency, modulates the biogenesis of exosomes and the profile of exosomal microRNAs, potentially contributing to phenotypic changes in cells receiving these exosomes.
Keyphrases
  • epstein barr virus
  • type iii
  • diffuse large b cell lymphoma
  • induced apoptosis
  • cell cycle arrest
  • mesenchymal stem cells
  • sars cov
  • signaling pathway
  • oxidative stress
  • cell proliferation
  • dna methylation
  • genome wide