Login / Signup

Mechanically Promoted Synthesis of Polymer Organogels via Disulfide Bond Cross-Linking.

Jorge AyarzaZhao WangJun WangAaron P Esser Kahn
Published in: ACS macro letters (2021)
Mechanically adaptive polymers could significantly improve the life-cycle of current materials. Piezo-polymerization is a novel approach that harnesses vibrational mechanical energy through piezoelectric nanoparticles to generate chemical promoters for linear polymerization and cross-linking reactions. However, the available piezo-polymerization systems rely on reactions forming irreversible covalent bonds. Dynamic covalent linkages could impart further adaptability to these polymeric systems. Here we show the first example of the piezoelectrochemical synthesis of disulfide bonds to form organogels from polymers with thiol side groups. We demonstrate that the reaction proceeds via piezo-oxidation of the thiol to disulfide in the presence of ZnO nanoparticles and iodide anions under mechanical agitation. We use mechanical energy in the form of ultrasound (40 kHz) and low frequency vibrations (2 kHz) to synthesize a variety of organogels from common synthetic polymers. Additionally, we show that the polymers in these gels can be chemically recycled with a reducing agent. Finally, we study the thermal and mechanical properties of the composites obtained after drying the gels. We believe this new system adds to the piezo-polymerization repertoire and serves as the basis to fabricate mechanically adaptive polymeric materials via dynamic covalent bonds.
Keyphrases