Login / Signup

Copper arylnitrene intermediates: formation, structure and reactivity.

Noël R M de KlerJana Roithová
Published in: Chemical communications (Cambridge, England) (2020)
The mechanism of oxidation of arylamines by copper enzymes is not clarified yet. Here, we explored a reaction between a possible high-valent copper(ii)-oxyl intermediate and arylamine. We have employed a TPA ligand (TPA = tris(2-pyridylmethyl)amine) with the NH2 group in position 2 of one of the pyridine rings (TPANH2). This model system allows generation of [(TPANH2)Cu(O)]+ in the gas phase, which immediately undergoes a reaction between the arylamino group and the copper oxyl moiety. The reaction leads to elimination of H2O and formation of a copper-nitrene complex. The structure of the resulting copper-nitrene complex was confirmed by infrared spectroscopy in the gas phase. We show that the copper-nitrene complex reacts by hydrogen atom transfer with 1,4-cyclohexadiene and by an order of magnitude faster by a double hydrogen atom transfer with ethanethiol and methanol. DFT calculations explain the formation of the copper nitrene as well as its reactivity in agreement with the experimental findings.
Keyphrases
  • oxide nanoparticles
  • electron transfer
  • nitric oxide
  • ionic liquid