Login / Signup

Transition-Metal-Mediated and -Catalyzed C-F Bond Activation by Fluorine Elimination.

Takeshi FujitaKohei FuchibeJunji Ichikawa
Published in: Angewandte Chemie (International ed. in English) (2018)
The activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry. Metal-mediated and -catalyzed elimination of β- or α-fluorine proceeds under milder conditions than oxidative addition to C-F bonds. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations through these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been increasingly developed in the past five years as C-F bond activation methods. In this Minireview, we summarize the applications of transition-metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective with early studies and from a systematic perspective with recent studies.
Keyphrases
  • transition metal
  • positron emission tomography
  • pet imaging
  • computed tomography
  • room temperature
  • case control