Login / Signup

The Full Pressure-Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers.

Yi XuJason RiordonXiang ChengBo BaoDavid Sinton
Published in: Angewandte Chemie (International ed. in English) (2017)
Knowing the thermodynamic state of complex mixtures-liquid, gas, supercritical or two-phase-is essential to industrial chemical processes. Traditionally, phase diagrams are compiled piecemeal from individual measurements in a pressure-volume-temperature cell performed in series, where each point is subject to a long fluid equilibrium time. Herein, 1000 microfluidic chambers, each isolated by a liquid piston and set to a different pressure and temperature combination, provide the complete pressure-temperature phase diagram of a hydrocarbon mixture at once, including the thermodynamic phase envelope. Measurements closely match modeled values, with a standard deviation of 0.13 MPa between measurement and model for the dew and bubble point lines, and a difference of 0.04 MPa and 0.25 °C between measurement and model for the critical point.
Keyphrases
  • single cell
  • ionic liquid
  • high throughput
  • heavy metals
  • wastewater treatment
  • cell therapy
  • risk assessment
  • room temperature
  • label free