Login / Signup

Nano-On-Nano: Responsive Nanosubstrate-Mediated Liposome Delivery with High Cellular Uptake Efficiency.

Bhaskarchand GautamChun-Hao LuoHua-De GaoJye-Chian HsiaoHsian-Rong TsengHsien-Ming LeeHsiao-Hua Yu
Published in: ACS applied bio materials (2023)
Efficiently delivering liposomal content to cells in a relatively uniform dose and patterned fashion, especially bypassing the degradative endocytosis pathway, is an important technology in cell culture and potentially to tissue engineering that still remains challenging. We developed a "nano-on-nano" platform technology that consists of the following three material features: (1) high density silicon nanopillars to create a pseudo-3-dimensional nanoenvironment for cell culturing, (2) thermoresponsive polymer grafted onto silicon nanopillars to form a responsive nanosubstrate, and (3) immobilized liposomes using a biotin-streptavidin-biotin conjugation. The working principle is that the liposomes are detached for cellular uptake upon thermal stimulation and high local liposome concentration between the cells and substrates drives the cellular uptake with nonendocytic pathways. Cryo-EM images confirms that liposomes are attached to form liposome-warped nanopillars. Upon thermal stimulation, an 8 times higher increase in the liposomal fluorescence intensity is observed compared to the conventional solution-phase liposome delivery, indicating that high local concentration drives liposome uptake with greater efficiency. Moreover, preliminary mechanistic studies reveal that these liposomes are taken up by nonendocytic pathways. The ability of our nano-on-nano delivery system that achieves efficient dose-uniform cellular delivery can open a unique era in cell and tissue engineering by controlling cell behaviors with the delivery of bioactive ingredient-loaded liposomes.
Keyphrases