Login / Signup

Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors.

Juhoon LeeHou-Fu GuoShike WangYazdan MaghsoudErik Antonio Vázquez-MontelongoZhifeng F JingRae M SammonsEun Jeong ChoPengyu RenGerardo Andrés CisnerosJonathan M KurieKevin N Dalby
Published in: ACS medicinal chemistry letters (2023)
Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1 - 18 , and identified 12 and 13 that inhibit LH2 with IC 50 's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).
Keyphrases
  • small molecule
  • risk assessment
  • cell death
  • wound healing
  • fluorescence imaging
  • smoking cessation
  • replacement therapy
  • structure activity relationship
  • wild type