Enhancement in photocatalytic water splitting using van der Waals heterostructure materials based on penta-layers.
M MaymounA ElomraniS OukahouY BahouAbdellatif HasnaouiK SbiaaiPublished in: Physical chemistry chemical physics : PCCP (2023)
Recently, van der Waals heterostructures (vdWHs) have been used to improve the performance of 2D materials, enabling more applications. By using first-principles calculations, we have studied the electronic and optical properties of vdWHs composed of penta-siligraphene and other penta-layers (p-Si2C4/p-X; X = Si 2 N 4 , ZnO 2 , Ge 2 C 4 or SiGeC 4 ). The stability of the vdWHs is verified by computing their binding energy, vibrational phonon spectra and ab initio molecular dynamics simulations. By assessing the electronic properties, we have found that the p-Si2C4/p-ZnO2, p-Si2C4/p-Ge2C4 and p-Si2C4/p-SiGeC4 vdWHs are semiconductors with an indirect band gap characterized by type-I band alignment. Meanwhile, the p-Si2C4/p-Si2N4 vdWH is a quasi-direct band gap semiconductor characterized by type-II band alignment. Bader charge analysis and charge density of p-Si2C4/p-Si2N4 vdWHs showed that photogenerated electrons move from the p-Si2N4 monolayer to the p-Si2C4 monolayer limiting the recombination of photogenerated charges and improving the photocatalytic efficiency. Furthermore, the p-Si2C4/p-Si2N4 vdWH exhibits suitable band edge positions compared to isolated monolayers suggesting its potential applicability in photocatalytic water splitting. The calculated optical absorption revealed that the p-Si2N4 monolayer exhibits substantial optical absorption in the ultraviolet (UV) range, while the p-Si2C4 monolayer and the p-Si2C4/p-Si2N4 vdWH show outstanding optical absorption on the order of 10 5 cm -1 in the visible and UV ranges. More importantly, the p-Si2C4/p-Si2N4 vdWH can greatly improve the optical absorption in these regions, which leads to high-efficiency usage of solar energy. Our study provides a route to design new vdWHs based on pentagonal monolayers, as well as an efficient photocatalyst for photocatalytic water splitting and optical devices.