Login / Signup

Connecting a broad spectrum of transient slip on the San Andreas fault.

Yen Joe TanDavid Marsan
Published in: Science advances (2020)
Strain accumulated on the deep extension of some faults is episodically released during transient slow-slip events, which can subsequently load the shallow seismogenic region. At the San Andreas fault, the characteristics of slow-slip events are difficult to constrain geodetically due to their small deformation signal. Slow-slip events (SSEs) are often accompanied by coincident tremor bursts composed of many low-frequency earthquakes. Here, we probabilistically estimate the spatiotemporal clustering properties of low-frequency earthquakes detected along the central San Andreas fault. We find that tremor bursts follow a power-law spatial and temporal decay similar to earthquake aftershock sequences. The low-frequency earthquake clusters reveal that the underlying slow-slip events have two modes of rupture velocity. Compared to regular earthquakes, these slow-slip events have smaller stress drop and rupture velocity but follow similar magnitude-frequency, moment-area, and moment-duration scaling. Our results connect a broad spectrum of transient fault slip that spans several orders of magnitude in rupture velocity.
Keyphrases
  • deep brain stimulation
  • cerebral ischemia
  • parkinson disease
  • single cell