Login / Signup

Linear Scaling Incremental Scheme for Correlation Energies with Embedding Generated Virtuals.

Ilyas TürkmenMichael Dolg
Published in: Journal of chemical theory and computation (2024)
A novel incremental scheme is presented including an incremental expansion of the virtual space for the calculation of electron correlation energies, which is compatible with any size-extensive correlation method and scales asymptotically linear for large molecules. The performance is studied for organic molecules, water clusters, and a La(III)-water complex, where the compatibility with pseudopotentials is also examined. The computational requirements are already reduced tremendously for medium-sized water clusters and hydrocarbons with respect to the canonical CCSD as well as the ordinary incremental scheme references. Correlation energies within chemical accuracy have been observed for all studied systems. The novelty of the method is that relatively small virtual spaces are used in combination with tuples of localized occupied spaces. The corresponding orthonormal occupied and virtual orbitals are obtained from QM/QM embedding calculations and can thus be used with standard quantum chemistry codes for correlation calculations. It is presented how relevant virtual spaces are selected and the correlation energies are linked in the new virtual space expansion.
Keyphrases
  • density functional theory
  • molecular dynamics
  • monte carlo
  • quantum dots
  • solar cells