Login / Signup

Breakdown of the Stokes-Einstein Relation in Supercooled Water/Methanol Binary Mixtures: Explanation Using the Translational Jump-Diffusion Approach.

Vikas DubeySnehasis Daschakraborty
Published in: The journal of physical chemistry. B (2020)
A recent experiment has directly checked the validity of the Stokes-Einstein (SE) relation for pure water, pure methanol, and their binary mixtures of three different compositions at different temperatures. The effect of composition on the nature of breakdown of the SE relation is interesting. While in the majority of the systems, an increasing SE breakdown is observed with decreasing temperature, the breakdown is already significant at higher temperatures for the equimolar mixture. Violations of the SE relation in pure supercooled water at different temperatures and pressures have been previously explained using the translational jump-diffusion (TJD) approach, which provides a fundamental molecular basis, by directly connecting the SE breakdown with jump-diffusion of the molecules. We have used the same TJD approach for explaining the SE breakdown for the methanol/water binary mixtures of compositions studied in the experiment over a wide range of temperatures between 220 K and 300 K. We have understood that the jump-diffusion is the key responsible factor for the SE breakdown. The maximum jump-diffusion contribution gives rise to the early SE breakdown observed for the equimolar mixture observed in the experiment. This study, therefore, provides molecular insight into the SE breakdown for the supercooled water/methanol binary mixture, as found in the experiment.
Keyphrases
  • ionic liquid
  • fluorescent probe
  • single molecule
  • solid state