Login / Signup

A microvolume shear cell for combined rheology and x-ray scattering experiments.

Theyencheri NarayananRajeev DattaniJohannes MöllerPaweł Kwaśniewski
Published in: The Review of scientific instruments (2020)
An experimental setup is presented for x-ray scattering studies of soft matter under shear flow that employs a low-background coaxial capillary cell coupled to a high-resolution commercial rheometer. The rotor of the Searle type cell is attached to the rheometer shaft, which allows the application of either steady or oscillatory shear of controlled stress or rate on the sample confined in the annular space between the stator and the rotor. The shearing device facilitates ultrasmall-angle x-ray scattering and ultrasmall-angle x-ray photon correlation spectroscopy measurements with relatively low scattering backgrounds. This enables the elucidation of weak structural features otherwise submerged in the background and probes the underlying dynamics. The performance of the setup is demonstrated by means of a variety of colloidal systems subjected to different rheological protocols. Examples include shear deformation of a short-range attractive colloidal gel, dynamics of dilute colloids in shear flow, distortion of the structure factor of a dense repulsive colloidal suspension, shear induced ordering of colloidal crystals, and alignment of multilamellar microtubes formed by a surfactant-polysaccharide mixture. Finally, the new possibilities offered by this setup for investigating soft matter subjected to shear flow by x-ray scattering are discussed.
Keyphrases