Wearable Plasmonic Sweat Biosensor for Acetaminophen Drug Monitoring.
Jingyu XiaoJing WangYong LuoTailin XuXue-Ji ZhangPublished in: ACS sensors (2023)
Monitoring the acetaminophen dosage is important to prevent the occurrence of adverse reactions such as liver failure and kidney damage. Traditional approaches to monitoring acetaminophen dosage mainly rely on invasive blood collection. Herein, we developed a noninvasive microfluidic-based wearable plasmonic sensor to achieve simultaneous sweat sampling and acetaminophen drug monitoring for vital signs. The fabricated sensor employs an Au nanosphere cone array as the key sensing component, which poses a substrate with surface-enhanced Raman scattering (SERS) activity to noninvasively and sensitively detect the fingerprint of acetaminophen molecules based on its unique SERS spectrum. The developed sensor enabled the sensitive detection and quantification of acetaminophen at concentrations as low as 0.13 μM. We further evaluated the sweat sensor integrated with a Raman spectrometer for monitoring acetaminophen in drug-administered subjects. These results indicated that the sweat sensor could measure acetaminophen levels and reflect drug metabolism. The sweat sensors have revolutionized wearable sensing technology by adopting label-free and sensitive molecular tracking methods for noninvasive and point-of-care drug monitoring and management.