Investigation of the Structure of Concentrated NaOH Aqueous Solutions by Combining Molecular Dynamics and Wide-Angle X-ray Scattering.
Amaury CosteArnaud PoulesquenOlivier DiatJean-François DufrêcheMagali DuvailPublished in: The journal of physical chemistry. B (2019)
Classical molecular dynamics has been performed with explicit polarization on NaOH aqueous solutions from 0.5 mol L-1 up to 9.7 mol L-1. We adapted a force field of OH- for polarizable simulation in order to reproduce the NaOH structural and thermodynamics properties in aqueous solutions. A good agreement between theoretical and experimental results has been found. Wide-angle X-ray scattering (WAXS) intensities issued from molecular dynamics are compared to experimental ones measured on Synchrotron facilities. The structure of the first coordination shell of Na+ has been studied to determine the variation of the oxygen number and hydroxide oxygen around the cation. In addition, Na+-OH- McMillan-Mayer potential issued from molecular dynamics simulations has been calculated and allows for calculating Na+-OH- pair association constant of 0.1 L mol-1, which is in good agreement with the experiments.