Login / Signup

Constructive adaptation of 3D-printable polymers in response to typically destructive aquatic environments.

Kunhao YuZhangzhengrong FengHaixu DuKyung Hoon LeeKetian LiYanchu ZhangSami F MasriQiming Wang
Published in: PNAS nexus (2022)
In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment. The mechanism relies on a water-assisted additional cross-linking reaction in the polymer matrix and on the interface. As such, the typically destructive water can constructively enhance the polymer's bulk mechanical properties such as stiffness, tensile strength, and fracture toughness by factors of 746% to 790%, and the interfacial bonding by a factor of 1,000%. We show that the invented polymers can be used for soft robotics that self-strengthen matrix and self-heal cracks after training in water and water-healable packaging materials for flexible electronics. This work opens the door for the design of synthetic materials to imitate the constructive adaptation of biological systems in response to environmental stressors, for applications such as artificial muscles, soft robotics, and flexible electronics.
Keyphrases
  • risk assessment
  • human health
  • ionic liquid
  • molecular dynamics simulations
  • solid state
  • electron transfer
  • hip fracture