Molecular Rationale behind the Differential Substrate Specificity of Bacterial RND Multi-Drug Transporters.
Venkata Krishnan RamaswamyAttilio Vittorio VargiuGiuliano MallociJürg DreierPaolo RuggeronePublished in: Scientific reports (2017)
Resistance-Nodulation-cell Division (RND) transporters AcrB and AcrD of Escherichia coli expel a wide range of substrates out of the cell in conjunction with AcrA and TolC, contributing to the onset of bacterial multidrug resistance. Despite sharing an overall sequence identity of ~66% (similarity ~80%), these RND transporters feature distinct substrate specificity patterns whose underlying basis remains elusive. We performed exhaustive comparative analyses of the putative substrate binding pockets considering crystal structures, homology models and conformations extracted from multi-copy μs-long molecular dynamics simulations of both AcrB and AcrD. The impact of physicochemical and topographical properties (volume, shape, lipophilicity, electrostatic potential, hydration and distribution of multi-functional sites) within the pockets on their substrate specificities was quantitatively assessed. Differences in the lipophilic and electrostatic potentials among the pockets were identified. In particular, the deep pocket of AcrB showed the largest lipophilicity convincingly pointing out its possible role as a lipophilicity-based selectivity filter. Furthermore, we identified dynamic features (not inferable from sequence analysis or static structures) such as different flexibilities of specific protein loops that could potentially influence the substrate recognition and transport profile. Our findings can be valuable for drawing structure (dynamics)-activity relationship to be employed in drug design.
Keyphrases
- molecular dynamics simulations
- structural basis
- amino acid
- escherichia coli
- single cell
- cell therapy
- molecular docking
- clinical trial
- stem cells
- social media
- healthcare
- emergency department
- health information
- mass spectrometry
- mesenchymal stem cells
- binding protein
- risk assessment
- pseudomonas aeruginosa
- human health
- drug induced
- biofilm formation
- bone marrow
- cystic fibrosis
- protein protein
- candida albicans