Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO2 Hydrogenation.
Jingzheng ZhangBing AnZhe LiYonghua CaoYiheng DaiWangyang WangLingzhen ZengWenbin LinCheng WangPublished in: Journal of the American Chemical Society (2021)
ZrZnOx is active in catalyzing carbon dioxide (CO2) hydrogenation to methanol (MeOH) via a synergy between ZnOx and ZrOx. Here we report the construction of Zn2+-O-Zr4+ sites in a metal-organic framework (MOF) to reveal insights into the structural requirement for MeOH production. The Zn2+-O-Zr4+ sites are obtained by postsynthetic treatment of Zr6(μ3-O)4(μ3-OH)4 nodes of MOF-808 by ZnEt2 and a mild thermal treatment to remove capping ligands and afford exposed metal sites for catalysis. The resultant MOF-808-Zn catalyst exhibits >99% MeOH selectivity in CO2 hydrogenation at 250 °C and a high space-time yield of up to 190.7 mgMeOH gZn-1 h-1. The catalytic activity is stable for at least 100 h. X-ray absorption spectroscopy (XAS) analyses indicate the presence of Zn2+-O-Zr4+ centers instead of ZnmOn clusters. Temperature-programmed desorption (TPD) of hydrogen and H/D exchange tests show the activation of H2 by Zn2+ centers. Open Zr4+ sites are also critical, as Zn2+ centers supported on Zr-based nodes of other MOFs without open Zr4+ sites fail to produce MeOH. TPD of CO2 reveals the importance of bicarbonate decomposition under reaction conditions in generating open Zr4+ sites for CO2 activation. The well-defined local structures of metal-oxo nodes in MOFs provide a unique opportunity to elucidate structural details of bifunctional catalytic centers.
Keyphrases
- metal organic framework
- pet imaging
- heavy metals
- carbon dioxide
- minimally invasive
- high resolution
- magnetic resonance imaging
- squamous cell carcinoma
- computed tomography
- radiation therapy
- magnetic resonance
- early stage
- single cell
- gene expression
- neoadjuvant chemotherapy
- combination therapy
- gold nanoparticles
- high density