Login / Signup

Hydrogen Bonding Compensation on the Convex Solvent-Exposed Helical Face of IA 3 , an Intrinsically Disordered Protein.

Katie M DunleavyCollin OiTianyan LiAndrew SecundaAfnan M JauferYinlu ZhuLee FriedmanAlexander KimGail E Fanucci
Published in: Biochemistry (2023)
Saccharomyces cerevisiae IA 3 is a 68 amino acid peptide inhibitor of yeast proteinase A (YPRA) characterized as a random coil when in solution, folding into an N-terminal amphipathic alpha helix for residues 2-32 when bound to YPRA, with residues 33-68 unresolved in the crystal complex. Circular dichroism (CD) spectroscopy results show that amino acid substitutions that remove hydrogen-bonding interactions observed within the hydrophilic face of the N-terminal domain (NTD) of IA 3 -YPRA crystal complex reduce the 2,2,2-trifluoroethanol (TFE)-induced helical transition in solution. Although nearly all substitutions decreased TFE-induced helicity compared to wild-type (WT), each construct did retain helical character in the presence of 30% (v/v) TFE and retained disorder in the absence of TFE. The NTDs of 8 different Saccharomyces species have nearly identical amino acid sequences, indicating that the NTD of IA 3 may be highly evolved to adopt a helical fold when bound to YPRA and in the presence of TFE but remain unstructured in solution. Only one natural amino acid substitution explored within the solvent-exposed face of the NTD of IA 3 induced TFE-helicity greater than the WT sequence. However, chemical modification of a cysteine by a nitroxide spin label that contains an acetamide side chain did enhance TFE-induced helicity. This finding suggests that non-natural amino acids that can increase hydrogen bonding or alter hydration through side-chain interactions may be important to consider when rationally designing intrinsically disordered proteins (IDPs) with varied biotechnological applications.
Keyphrases