Login / Signup

Wavelet Coherence Analysis of Post-Stroke Intermuscular Coupling Modulated by Myoelectric-Controlled Interfaces.

Xinyi HeWenbo SunRong SongWeiling Xu
Published in: Bioengineering (Basel, Switzerland) (2024)
Intermuscular coupling reflects the corticospinal interaction associated with the control of muscles. Nevertheless, the deterioration of intermuscular coupling caused by stroke has not received much attention. The purpose of this study was to investigate the effect of myoelectric-controlled interface (MCI) dimensionality on the intermuscular coupling after stroke. In total, ten age-matched controls and eight stroke patients were recruited and executed elbow tracking tasks within 1D or 2D MCI. Movement performance was quantified using the root mean square error (RMSE). Wavelet coherence was used to analyze the intermuscular coupling in alpha band (8-12 Hz) and beta band (15-35 Hz). The results found that smaller RMSE of antagonist muscles was observed in both groups within 2D MCI compared to 1D MCI. The alpha-band wavelet coherence was significantly lower in the patients compared to the controls during elbow extension. Furthermore, a decreased alpha-band and beta-band wavelet coherence was observed in the controls and stroke patients, as the dimensionality of MCI increased. These results may suggest that stroke-related neural impairments deteriorate the motor performance and intermuscular coordination pattern, and, further, that MCI holds promise as a novel effective tool for rehabilitation through the direct modulation of muscle activation pattern.
Keyphrases