SIFTING FOR SAPPHIRES: SYSTEMATIC SELECTION OF TIDAL DISRUPTION EVENTS IN iPTF.
T HungS GezariS B CenkoS van VelzenN BlagorodnovaLin YanS R KulkarniR LunnanT KupferG LeloudasA K H KongP E NugentC FremlingRuss R LaherF J MasciY CaoR RoyT PetrushevskaPublished in: The Astrophysical journal. Supplement series (2018)
We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg2), g + R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>60% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.7 - 1.3 + 2.9 × 10 - 4 gal - 1 yr - 1 (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.