Login / Signup

Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields.

Ruben F HamansMatteo ParenteAndrea Baldi
Published in: Nano letters (2021)
Plasmonic nanoparticles have recently emerged as promising photocatalysts for light-driven chemical conversions. Their illumination results in the generation of highly energetic charge carriers, elevated surface temperatures, and enhanced electromagnetic fields. Distinguishing between these often-overlapping processes is of paramount importance for the rational design of future plasmonic photocatalysts. However, the study of plasmon-driven chemical reactions is typically performed at the ensemble level and, therefore, is limited by the intrinsic heterogeneity of the catalysts. Here, we report an in situ single-particle study of a fluorogenic chemical reaction driven solely by plasmonic near-fields. Using super-resolution fluorescence microscopy, we map the position of individual product molecules with an ∼30 nm spatial resolution and demonstrate a clear correlation between the electric field distribution around individual nanoparticles and their super-resolved catalytic activity maps. Our results can be extended to systems with more complex electric field distributions, thereby guiding the design of future advanced photocatalysts.
Keyphrases
  • single molecule
  • energy transfer
  • visible light
  • high resolution
  • label free
  • current status
  • photodynamic therapy
  • high frequency
  • highly efficient