Login / Signup

Entropic Mixing of Ring/Linear Polymer Blends.

Gary S GrestTing GeSteven J PlimptonMichael RubinsteinThomas C O'Connor
Published in: ACS polymers Au (2022)
The topological constraints of nonconcatenated ring polymers force them to form compact loopy globular conformations with much lower entropy than unconstrained ideal rings. The closed-loop structure of ring polymers also enables them to be threaded by linear polymers in ring/linear blends, resulting in less compact ring conformations with higher entropy. This conformational entropy increase promotes mixing rings with linear polymers. Here, using molecular dynamics simulations for bead-spring chains, ring/linear blends are shown to be significantly more miscible than linear/linear blends and that there is an entropic mixing, negative χ, for ring/linear blends compared to linear/linear and ring/ring blends. In analogy with small angle neutron scattering, the static structure function S ( q ) is measured, and the resulting data are fit to the random phase approximation model to determine χ. In the limit that the two components are the same, χ = 0 for the linear/linear and ring/ring blends as expected, while χ < 0 for the ring/linear blends. With increasing chain stiffness, χ for the ring/linear blends becomes more negative, varying reciprocally with the number of monomers between entanglements. Ring/linear blends are also shown to be more miscible than either ring/ring or linear/linear blends and stay in single phase for a wider range of increasing repulsion between the two components.
Keyphrases
  • molecular dynamics simulations
  • machine learning
  • molecular docking
  • deep learning
  • single molecule
  • molecular dynamics
  • artificial intelligence