An Ionic Liquid Ablation Agent for Local Ablation and Immune Activation in Pancreatic Cancer.
Junming HuangMeng WangFu ZhangShiyi ShaoZhuo YaoXinyu ZhaoQi-da HuTingbo LiangPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
Pancreatic ductal adenocarcinoma rapidly acquires resistance to chemotherapy, remaining a fatal disease. Immunotherapy is one of the breakthroughs in cancer treatment, which includes immune checkpoint inhibitors, chimeric antigen receptor T-cell immunotherapy, and neoantigen vaccines. However, immunotherapy has not achieved satisfactory results in the treatment of pancreatic cancer. Immunogenic death comprises proinflammatory cell death, which provides a way to enhance tumor immunogenicity and promote an immune response in solid tumors. Herein, an ionic liquid ablation agent (LAA), synthesized from choline and geranic acid, which triggers necrosis-induced immunotherapy by remodeling an immunosuppressive "cold" tumor to an immune activated "hot" tumor is described. The results indicate that LAA-treated tumor cells can enhance immunogenicity, inducing dendritic cell maturation, macrophage M1 polarization, and cytotoxic T lymphocyte infiltration. The results of the present study provide a novel strategy for solid tumor immunotherapy.