Login / Signup

Interconnected Microdomain Structure of a Cross-Linked Cellulose Nanocomposite Revealed by Micro-Raman Imaging and Its Influence on Water Permeability of a Film.

Lei LiRun-Hua LiuBiao YangZi-Han ZhouLing XuHua-Dong HuangGan-Ji ZhongZhong-Ming Li
Published in: Biomacromolecules (2019)
Substantial adsorption of water vapor triggered by hydrogen-bonding interactions between water molecules and cellulose chains (or nanoplates) is hard to avoid in nanocomposite films, although the addition of nanoplates can improve the oxygen (or carbon dioxide) barrier property. In the present work, an effective strategy is raised to decline adsorption by weakening hydrogen-bonding interactions via chemical cross-linking by epichlorohydrin (ECH) without sacrificing the homogeneous dispersion of nanoplates. The generated microdomain structure of the chemical cross-linking reaction via ECH is explicitly revealed by micro-Raman imaging. Unambiguously, Raman maps of scanning elucidate the distribution and morphology of physical and chemical cross-linking domains quantitatively. The chemical cross-linking domains are nearly uniformly located in the matrix at a low degree of cross-linking, while the interconnected and assembled networks are formed at a high degree of cross-linking. ECH boosts the formation of chemical cross-linking microdomains, bringing out the terrific water vapor barrier property and alleviating the interfacial interactions in penetration, consequently magnifying the water contact angle and holding back the water vapor permeability. Our methodology confers an effective and convenient strategy to obtain remarkable water vapor-resistant cellulose-based films that meet the practical application in the packaging fields.
Keyphrases