Login / Signup

Nanoscale and Real-Time Nuclear-Electronic Dynamics Simulation Study of Charge Transfer at the Donor-Acceptor Interface in Organic Photovoltaics.

Hiroki UrataniHiromi Nakai
Published in: The journal of physical chemistry letters (2023)
Charge-transfer (CT) processes in donor-acceptor interfaces of organic photovoltaics have been challenging targets for computational chemistry owing to their nanoscale and ultrafast nature. Herein, we report real-time nuclear-electronic dynamics simulations of CT processes in a nanometer-scale donor-acceptor interface model composed of a donor poly(3-hexylthiophene-2,5-diyl) crystal and an acceptor [6,6]-phenyl-C 61 -butyric acid methyl ester aggregate. The simulations were realized using our original reduced-scaling computational technique, namely, patchwork-approximation-based Ehrenfest dynamics. The results illustrated the CT pathway with atomic resolution, thereby rationalizing the observed excitation-energy dependence of the quantity of CT. Further, nuclear motion, which is affected by the electronic dynamics, was observed to play a significant role in the CT process by modulating molecular orbital energies. The present study suggests that microscopic CT processes strongly depend on local structures of disordered donor-acceptor interfaces as well as coupling between nuclear and electronic dynamics.
Keyphrases