Login / Signup

A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.

Patrick M ArnottStefan Howorka
Published in: ACS nano (2019)
Nanopores are powerful nanodevices that puncture semifluid membranes to enable transport of molecular matter across biological or synthetic thin layers. Advanced nanopores featuring more complex functions such as ambient sensing and reversible channel opening are of considerable scientific and technological interest but challenging to achieve with classical building materials. Here we exploit the predictable assembly properties of DNA to form a multifunctional nanovalve that senses temperature for controlled channel opening and tunable transport. The barrel-shaped valve is formed from solely seven oligonucleotides and is closed at ambient temperatures. At >40 °C a programmable thermosensitive lid opens the barrel to allow transport of small molecules across the membrane. The multifunctional DNA nanodevice may be used to create logic ionic networks or to achieve controlled drug delivery from vesicles.
Keyphrases