Login / Signup

Age Determination of Chrysomya megacephala Pupae through Reflectance and Machine Learning Analysis.

Xiangyan ZhangHongke QuZiqi ZhouSile ChenFernand Jocelin NgandoFengqin YangJiao XiaoYadong GuoJifeng CaiChangquan Zhang
Published in: Insects (2024)
Estimating the age of pupa during the development time of the blow fly Chrysomya megacephala (Diptera: Calliphoridae) is of forensic significance as it assists in determining the time of colonization (TOC), which could help to determine the postmortem interval (PMI). However, establishing an objective, accurate, and efficient method for pupa age inference is still a leading matter of concern among forensic entomologists. In this study, we utilized hyperspectral imaging (HSI) technology to analyze the reflectance changes of pupa development under different temperatures (15 °C, 20 °C, 25 °C, and 30 °C). The spectrograms showed a downtrend under all temperatures. We used PCA to reduce the dimensionality of the spectral data, and then machine learning models (RF, SVR-RBF, SVR-POLY, XGBR, and Lasso) were built. RF, SVR with RBF kernel, and XGBR could show promise in accurate developmental time estimation using accumulated degree days. Among these, the XGBR model consistently exhibited the most minor errors, ranging between 3.9156 and 7.3951 (MAE). This study has identified the value of further refinement of HSI in forensic applications involving entomological specimens, and identified the considerable potential of HSI in forensic practice.
Keyphrases