Linear behavior in Covid19 epidemic as an effect of lockdown.
Dario BambusiAntonio PonnoPublished in: Journal of mathematics in industry (2020)
We propose a mechanism explaining the approximately linear growth of Covid19 world total cases as well as the slow linear decrease of the daily new cases (and daily deaths) observed (in average) in USA and Italy. In our explanation, we regard a given population (the whole world or a single nation) as composed by many sub-clusters which, after lockdown, evolve essentially independently. The interaction is modeled by the fact that the outbreak time of the epidemic in a sub-cluster is a random variable with probability density slowly varying in time. The explanation is independent of the law according to which the epidemic evolves in the single sub cluster.