Air-Tolerant Reversible Complexation Mediated Polymerization (RCMP) Using Aldehyde.
Weijia MaoXiu Ting TayJit SarkarChen-Gang WangAtsushi GotoPublished in: Macromolecular rapid communications (2022)
An air-tolerant reversible complexation mediated polymerization (RCMP) technique, which can be carried out without prior deoxygenation, is developed. The system contains a monomer, an alkyl iodide initiating dormant species, air (oxygen), an aldehyde, N-hydroxyphthalimide (NHPI), and a base. Oxygen is consumed via the NHPI-catalyzed conversion of the aldehyde (RCHO) to a carboxylic acid (RCOOH). The generated RCOOH is further converted to a carboxylate anion (RCOO - ) by the base. The RCOO - generated in situ works as an RCMP catalyst; the polymerization proceeds with the monomer, alkyl iodide dormant species, and RCOO - catalyst. Thus, the system is not only air-tolerant but also does not require additional RCMP catalysts, which is a notable feature of this system. (NHPI is used as an oxidation catalyst for converting RCHO to RCOOH.) This technique is amenable to methyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, and styrene, yielding polymers with relatively low-dispersity (M w /M n = 1.20-1.49), where M w and M n are the weight- and number-average molecular weights, respectively.
Keyphrases