Login / Signup

Nature of the Trigger Linkage in Explosive Materials Is a Charge-Shift Bond.

Jyothish JoyDavid DanovichSason S Shaik
Published in: The Journal of organic chemistry (2021)
Explosion begins by rupture of a specific bond, in the explosive, called a trigger linkage. We characterize this bond in nitro-containing explosives. Valence-bond (VB) investigations of X-NO2 linkages in alkyl nitrates, nitramines, and nitro esters establish the existence of Pauli repulsion that destabilizes the covalent structure of these bonds. The trigger linkages are mainly stabilized by covalent-ionic resonance and are therefore charge-shift bonds (CSBs). The source of Pauli repulsion in nitro explosives is unique. It is traced to the hyperconjugative interaction from the oxygen lone pairs of NO2 into the σ(X-N)* orbital, which thereby weakens the X-NO2 bond, and depletes its electron density as X becomes more electronegative. Weaker trigger bonds have higher CSB characters. In turn, weaker bonds increase the sensitivity of the explosive to impacts/shocks which lead to detonation. Application of the analysis to realistic explosives supports the CSB character of their X-NO2 bonds by independent criteria. Furthermore, other families of explosives also involve CSBs as trigger linkages (O-O, N-O, Cl-O, N-I, etc. bonds). In all of these, detonation is initiated selectively at the CSB of the molecule. A connection is made between the CSB bond-weakening and the surface-electrostatic potential diagnosis in the trigger bonds.
Keyphrases
  • transition metal
  • genome wide
  • ionic liquid
  • gene expression
  • risk assessment
  • dna methylation