Cognitive decline assessment using semantic linguistic content and transformer deep learning architecture.

Rini PlGayathri Ks
Published in: International journal of language & communication disorders (2023)
What is already known on this subject It is already known that speech- and language-based detection methods can be useful for dementia diagnosis, as language difficulties are often early signs of the disease. Additionally, deep learning algorithms have shown promise in detecting and diagnosing dementia through analysing large datasets, particularly in speech- and language-based detection methods. However, further research is needed to validate the performance of these algorithms on larger and more diverse datasets and to address potential biases and limitations. What this paper adds to existing knowledge This study presents a unique and effective approach for cognitive decline assessment through analysing speech data. The study provides valuable insights into the importance of context and semantic memory in accurately detecting the potential in dementia and demonstrates the applicability of deep learning models for this purpose. The findings of this study have important clinical implications and can inform future research and development in the field of dementia detection and care. What are the potential or actual clinical implications of this work? The proposed approach for cognitive decline assessment using speech data and deep learning models has significant clinical implications. It has the potential to improve the accuracy and efficiency of dementia diagnosis, leading to earlier detection and more effective treatments, which can improve patient outcomes and quality of life.