Login / Signup

Nuclear-driven production of renewable fuel additives from waste organics.

Arran George PlantBor KosAnže JazbecLuka SnojVesna Najdanovic-VisakMalcolm John Joyce
Published in: Communications chemistry (2021)
Non-intermittent, low-carbon energy from nuclear or biofuels is integral to many strategies to achieve Carbon Budget Reduction targets. However, nuclear plants have high, upfront costs and biodiesel manufacture produces waste glycerol with few secondary uses. Combining these technologies, to precipitate valuable feedstocks from waste glycerol using ionizing radiation, could diversify nuclear energy use whilst valorizing biodiesel waste. Here, we demonstrate solketal (2,2-dimethyl-1,3-dioxolane-4-yl) and acetol (1-hydroxypropan-2-one) production is enhanced in selected aqueous glycerol-acetone mixtures with γ radiation with yields of 1.5 ± 0.2 µmol J -1 and 1.8 ± 0.2 µmol J -1 , respectively. This is consistent with the generation of either the stabilized, protonated glycerol cation (CH 2 OH-CHOH-CH 2 OH 2 +  ) from the direct action of glycerol, or the hydronium species, H 3 O + , via water radiolysis, and their role in the subsequent acid-catalyzed mechanisms for acetol and solketal production. Scaled to a hypothetically compatible range of nuclear facilities in Europe (i.e., contemporary Pressurised Water Reactor designs or spent nuclear fuel stores), we estimate annual solketal production at approximately (1.0 ± 0.1) × 10 4 t year -1 . Given a forecast increase of 5% to 20% v/v% in the renewable proportion of commercial petroleum blends by 2030, nuclear-driven, biomass-derived solketal could contribute towards net-zero emissions targets, combining low-carbon co-generation and co-production.
Keyphrases
  • heavy metals
  • ionic liquid
  • municipal solid waste
  • room temperature
  • sewage sludge
  • risk assessment
  • radiation induced