Login / Signup

Brain Structural Changes in Schizophrenia Patients Compared to the Control: An MRI-based Cavalieri's Method.

Zahra HeidariHamidreza Mahmoudzadeh-SaghebMansour ShakibaEnam Alhagh Charkhat Gorgich
Published in: Basic and clinical neuroscience (2023)
Schizophrenia is a severe neuropsychiatric disorder with worldwide prevalence that disrupts a person's social life. It's characterized by progressive neuroanatomical alterations in both gray and white matter in different brain regions and associated with changes in the structural and functioning of some critical brain circuits. Several factors have been suggested to be involved in the development and progression of the disease including alternations and disconnection in myelin, genetic factors, neurodegenerative process, neuroinflammation, neurodevelopmental deficiencies, the number of dopaminergic neurons and volumetric changes in different areas of the brain. It has shown that quantitative volumetric brain measurements on magnetic resonance imaging (MRI) scans in patients with neurodegenerative disease owing to selective regional atrophy are beneficial for clinicians to ascertain disease progression and to evaluate volume alternations and response to treatment. Thus, we investigated structural changes of the brain in schizophrenia patients on MR images using accurate Cavalieri's estimation and compared to healthy controls. The findings demonstrated that some structural changes occurs in various brain areas which involved in many critical roles in normal brain's functionality and connectivity. On the other hand, these changes are associated with cognitive impairments and the severity of clinical symptoms in patients with schizophrenia. It's appears that elucidation of the different pathways of various structural abnormalities related to schizophrenia is required to recognize and determine the role of discrete pathophysiological phenomena in mental illness development and progress.
Keyphrases