Antifreeze protein (AFP) is a proteinaceous compound with improved antifreeze ability and binding ability to ice to prevent its growth. As a surface-active material, a small number of AFPs have a tremendous influence on the growth of ice. Therefore, identifying novel AFPs is important to understand protein-ice interactions and create novel ice-binding domains. To date, predicting AFPs is difficult due to their low sequence similarity for the ice-binding domain and the lack of common features among different AFPs. Here, a computational engine was developed to predict the features of AFPs and reveal the most important 39 features for AFP identification, such as antifreeze-like/N-acetylneuraminic acid synthase C-terminal, insect AFP motif, C-type lectin-like, and EGF-like domain. With this newly presented computational method, a group of previously confirmed functional AFP motifs was screened out. This study has identified some potential new AFP motifs and contributes to understanding biological antifreeze mechanisms.