Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin.
Sukhyun HwangShin Hye ChungJung Tae LeeYong-Tae KimYoo Jin KimSoram OhIn-Sung Luke YeoPublished in: Materials (Basel, Switzerland) (2018)
This study investigated the influences of acidity, ethanol, and pigment on the optical properties, microhardness, and surface roughness (Ra) of a nanohybrid dental composite resin. A total of 108 disc-shaped specimens were fabricated using a nanohybrid dental composite and allocated into 36 different storage solutions according to the levels of pH (2.0, 3.0, 4.0, and 5.5), ethanol (0%, 20%, and 40%), and anthocyanin pigment (0%, 2.5%, and 12.5%). Measurements of the colorimetric parameter and the amount of color change (ΔE), translucency parameter (TP), microhardness, and surface roughness (Ra) were performed at 24 h (baseline), 1-, 2-, 3-, and 4-weeks. Repeated measures of analysis of variance (ANOVA) with a Tukey honestly significant difference test and Pearson correlation analysis were carried out (α = 0.05). Pigment of 12.5% or 40% ethanol significantly increased the ΔE (P < 0.001, P = 0.048, respectively). Pigment of 2.5% or 12.5% significantly decreased the TP (P = 0.001, P < 0.001, respectively). Microhardness of composite resin stored in pH 2.0, 3.0, 4.0 solution was lower than that for pH 5.5 (P < 0.001). Pigment, ethanol, and pH did not influence the Ra. TP change and ΔE, and Ra and ΔE had a significant positive correlation (P < 0.05). In conclusion, pigment and ethanol levels influenced the optical properties and acidity affected the microhardness of composite resin.