Login / Signup

Custom fabricated three-dimensional printed surgical guide for trephine bur in autogenous bone graft: A technique report.

Jaewon KimJekita KaenployDu-Hyeong LeeNur AshsamsPraveen R Arany
Published in: Journal of prosthodontics : official journal of the American College of Prosthodontists (2024)
This technique presents a workflow that designs the custom surgical guide to cover a trephine bur using simple slicer software and three-dimensional (3D) printing to perform the semilunar technique. This method in autogenous bone grafting surgery harvests a thin layer of cortical bone in the donor site with a trephine bur. Its biologically favorable, round shape can be used as a shell to reconstruct the ridge with a 3D contour acceptable for future implant placement. A 78-year-old female patient required vertical and horizontal bone grafting for future implant placement due to the infection caused by the vertically fractured root of a premolar. The patient's cone beam computed tomography (CBCT) file was translated into a standard tessellation language (STL) file, and recipient and donor site models were created. Simulated surgery was done using the software first to detect any possible complications during surgery. The trephine bur planned for use in surgery was measured in necessary dimensions, and the values were added to create a guide for surgery in slicer software. Then, it was 3D-printed with a stereolithography (SLA) printer. After testing the fit of the guide, it was further tested on a fused filament fabrication (FFF) printed donor site model to check if the desired shape and size of the plate were acquired after harvest. Then, the plates were used for model surgery on the recipient site model. After no issues from the previous steps, the final patient surgery was approved and completed with success. This technique utilizes the SLA printing method to create the custom surgical guide for a trephine bur without using commercially available products. Moreover, it could be tested on FFF 3D-printed anatomical models to ensure its validity. With this innovative technique, clinicians can efficiently perform a semilunar technique, facilitating the surgery and improving patient care.
Keyphrases
  • minimally invasive
  • coronary artery bypass
  • magnetic resonance
  • computed tomography
  • risk factors
  • palliative care
  • percutaneous coronary intervention
  • body composition
  • electronic health record