Login / Signup

Cardiac progenitor cell-derived extracellular vesicles promote angiogenesis through both associated- and co-isolated proteins.

Marieke Theodora RoefsJulia Bauzá-MartinezSimonides Immanuel van de WakkerJiabin QinWillem Theodoor OlijveRobin TuinteMarjolein RozeboomChristian Snijders BlokEmma Alise MolWei WuPieter VaderJoost Petrus Gerardus Sluijter
Published in: Communications biology (2023)
Extracellular vesicles (EVs) are cell-derived lipid bilayer-enclosed particles that play a role in intercellular communication. Cardiac progenitor cell (CPC)-derived EVs have been shown to protect the myocardium against ischemia-reperfusion injury via pro-angiogenic effects. However, the mechanisms underlying CPC-EV-induced angiogenesis remain elusive. Here, we discovered that the ability of CPC-EVs to induce in vitro angiogenesis and to stimulate pro-survival pathways was lost upon EV donor cell exposure to calcium ionophore. Proteomic comparison of active and non-active EV preparations together with phosphoproteomic analysis of activated endothelial cells identified the contribution of candidate protein PAPP-A and the IGF-R signaling pathway in EV-mediated cell activation, which was further validated using in vitro angiogenesis assays. Upon further purification using iodixanol gradient ultracentrifugation, EVs partly lost their activity, suggesting a co-stimulatory role of co-isolated proteins in recipient cell activation. Our increased understanding of the mechanisms of CPC-EV-mediated cell activation will pave the way to more efficient EV-based therapeutics.
Keyphrases