The aim of this study was to investigate planning target volume (PTV) margin in online adaptive radiation therapy (oART) for gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Four consecutive patients with gastric MALT lymphoma who received oART (30 Gy in 15 fractions) on the oART system were included in this study. One hundred and twenty cone-beam computed tomography (CBCT) scans acquired pre- and post-treatment of 60 fractions for all patients were used to evaluate intra- and interfractional motions. Patients were instructed on breath-holding at exhalation during image acquisition. To assess the intrafraction gastric motion, different PTVs were created by isotropically extending the CTV contoured on a pre-CBCT image (CTVpre) at1 mm intervals. Intrafraction motion was defined as the amount of expansion covering the contoured CTV on post-CBCT images (CTVpost). Interfractional motion was defined as the amount of reference CTV expansion that could cover each CTVpre, as well as the evaluation of the intrafractional motion. PTV margins were estimated from the cumulative proportion of fraction covering the intra- and interfractional motions. The extent of expansion covering the CTVs in 90% of fractions was adopted as the PTV margin. The PTV margin for intrafractional gastric motion using the oART system with breath-holding was 14 mm. In contrast, the PTV margin for interfractional gastric organ motion without the oART system was 25 mm. These results indicated that the oART system can reduce the PTV margin by >10 mm. Our results could be valuable data for oART cases.
Keyphrases
- cone beam computed tomography
- end stage renal disease
- radiation therapy
- ejection fraction
- newly diagnosed
- high speed
- chronic kidney disease
- deep learning
- prognostic factors
- magnetic resonance
- computed tomography
- diffuse large b cell lymphoma
- social media
- health information
- peritoneal dialysis
- squamous cell carcinoma
- machine learning
- high resolution
- patient reported
- convolutional neural network
- mass spectrometry