Rational Screening of High-Voltage Electrolytes and Additives for Use in LiNi 0.5 Mn 1.5 O 4 -Based Li-Ion Batteries.
Oleg A DrozhzhinVitalii A ShevchenkoZoia V BobylevaAnastasia M AlekseevaEvgeny V AntipovPublished in: Molecules (Basel, Switzerland) (2022)
In the present work, we focus onthe experimental screening of selected electrolytes, which have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries. Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with idle electrode (C+PVDF) and the LiNi 0.5 Mn 1.5 O 4 -based composite as a positive electrode. Some of the solutions were based on the standard 1 M LiPF 6 in EC:DMC:DEC = 1:1:1 with/without additives, such as fluoroethylene carbonate, lithium bis(oxalate) borate and lithium difluoro(oxalate)borate. More concentrated solutions of LiPF 6 in EC:DMC:DEC = 1:1:1 were also studied. In addition, the solutions of LiBF 4 and LiPF 6 in various solvents, such as sulfolane, adiponitrile and tris(trimethylsilyl) phosphate, atdifferent concentrations were investigated. A complex study, including cyclic voltammetry, galvanostatic cycling, impedance spectroscopy and ex situ PXRD and EDX, was applied for the first time to such a wide range of electrolytesto provide an objective assessment of the stability of the systems under study. We observed a better anodic stability, including a slower capacity fading during the cycling and lower charge transfer resistance, for the concentrated electrolytes and sulfolane-based solutions. Among the studied electrolytes, the concentrated LiPF 6 in EC:DEC:DMC = 1:1:1 performed the best, since it provided both low SEI resistance and stability of the LiNi 0.5 Mn 1.5 O 4 cathode material.