Login / Signup

QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea.

Vikas SinghPallavi SinhaJimmy ObalaAamir W KhanAnnapurna ChitikineniRachit K SaxenaRajeev Kumar Varshney
Published in: Heredity (2022)
To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F 2 ) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.
Keyphrases
  • genome wide
  • copy number
  • arabidopsis thaliana
  • dna methylation
  • single cell
  • high density
  • rna seq
  • high resolution
  • deep learning
  • transcription factor
  • electronic health record
  • big data