Exsolution on perovskite oxides: morphology and anchorage of nanoparticles.
Thomas RuhDominic BerkovecFlorian SchrenkChristoph RameshanPublished in: Chemical communications (Cambridge, England) (2023)
Perovskites are very promising materials for a wide range of applications (such as catalysis, solid oxide fuel cells…) due to beneficial general properties ( e.g. stability at high temperatures) and tunability - doping both A- and B-site cations opens the path to a materials design approach that allows specific properties to be finely tuned towards applications. A major asset of perovskites is the ability to form nanoparticles on the surface under certain conditions in a process called "exsolution". Exsolution leads to the decoration of the material's surface with finely dispersed nanoparticles (which can be metallic or oxidic - depending on the experimental conditions) made from B-site cations of the perovskite lattice (here, doping comes into play, as B-site doping allows control over the constitution of the nanoparticles). In fact, the ability to undergo exsolution is one of the main reasons that perovskites are currently a hot topic of intensive research in catalysis and related fields. Exsolution on perovskites has been heavily researched in the last couple of years: various potential catalysts have been tested with different reactions, the oxide backbone materials and the exsolved nanoparticles have been investigated with a multitude of different methods, and the effect of different exsolution parameters on the resulting nanoparticles has been studied. Despite all this, to our knowledge no comprehensive effort was made so far to evaluate these studies with respect to the effect that the exsolution conditions have on anchorage and morphology of the nanoparticles. Therefore, this highlight aims to provide an overview of nanoparticles exsolved from oxide-based perovskites with a focus on the conditions leading to nanoparticle exsolution.