Login / Signup

Subgroup analysis with semiparametric models toward precision medicine.

Ao YuanXiaofei ChenYizhao ZhouMing T Tan
Published in: Statistics in medicine (2018)
In analyzing clinical trials, one important objective is to classify the patients into treatment-favorable and nonfavorable subgroups. Existing parametric methods are not robust, and the commonly used classification rules ignore the fact that the implications of treatment-favorable and nonfavorable subgroups can be different. To address these issues, we propose a semiparametric model, incorporating both our knowledge and uncertainty about the true model. The Wald statistics is used to test the existence of subgroups, while the Neyman-Pearson rule to classify each subject. Asymptotic properties are derived, simulation studies are conducted to evaluate the performance of the method, and then method is used to analyze a real-world trial data.
Keyphrases