Login / Signup

Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model.

Xiaomin HanYufan MaYuzhi ChenXuefei WangZhuo Wang
Published in: Analytical chemistry (2020)
As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH3O-TPE-Py+-N+ (COTN) and OH-TPE-Py+-N+ (HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py+-N+ group; the reaction products are CH3O-TPE-CHO (COT) and OH-TPE-CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels.
Keyphrases