Differential Influences of Endogenous and Exogenous Sensory Neuropeptides on the ATP Metabolism by Soluble Ectonucleotidases in the Murine Bladder Lamina Propria.
Alejandro Gutierrez CruzMafalda S L Aresta BrancoMahsa Borhani PeikaniVioleta N Mutafova-YambolievaPublished in: International journal of molecular sciences (2023)
Bladder urothelium and suburothelium/lamina propria (LP) have prominent sensory and transducer functions with the active participation of afferent neurons and urothelium-derived purine mediators such as adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine (ADO). Effective concentrations of purines at receptor targets depend significantly on the extracellular degradation of ATP by ectonucleotidases (ENTDs). We recently reported the regulated release of soluble ENTDs (s-ENTDs) in the LP and the consequent degradation of ATP to ADP, AMP, and ADO. Afferent neurons in the LP can be activated by urothelial ATP and release peptides and other transmitters that can alter the activity of cells in their vicinity. Using a murine decentralized ex vivo detrusor-free bladder model, 1,N 6 -etheno-ATP (eATP) as substrate, and sensitive HPLC-FLD methodologies, we found that exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (Sub P), neurokinin A (NKA), and pituitary adenylate cyclase-activating polypeptide [PACAP (1-38)] all increased the degradation of eATP by s-ENTDs that were released in the LP spontaneously and/or during bladder filling. Using antagonists of neuropeptide receptors, we observed that endogenous NKA did not modify the ATP hydrolysis by s-ENTDs, whereas endogenous Sub P increased both the constitutive and distention-induced release of s-ENTDs. In contrast, endogenous CGRP and PACAP (1-38) increased the distention-induced, but not the spontaneous, release of s-ENTDs. The present study puts forward the novel idea that interactions between peptidergic and purinergic signaling mechanisms in the LP have an impact on bladder excitability and functions by regulating the effective concentrations of adenine purines at effector cells in the LP.
Keyphrases
- spinal cord injury
- urinary tract
- induced apoptosis
- spinal cord
- oxidative stress
- cell cycle arrest
- magnetic resonance
- high glucose
- signaling pathway
- transcription factor
- physical activity
- dendritic cells
- computed tomography
- copy number
- mass spectrometry
- high grade
- dna methylation
- high resolution
- endothelial cells
- working memory
- cell proliferation
- amino acid
- transcranial direct current stimulation
- liquid chromatography