Login / Signup

Nanostructuring of Strontium Hexaboride via Lithiation.

Roshini RamachandranTina T Salguero
Published in: Inorganic chemistry (2017)
We describe the top-down nanostructuring of a metal boride using SrB6 as an example. To accomplish this transformation, we demonstrate (1) the direct lithiation of a metal boride using n-butyllithium and then (2) the reactive disassembly of Li-SrB6 into nanoparticles using water. The identity of the Li-SrB6 intermediate, a mixture of Li2B6, LixSr1-2xB6, and SrB6 phases, was established by powder X-ray diffraction (PXRD), solid-state 11B and 7Li NMR, transmission electron microscopy, selected-area electron diffraction, and scanning electron microscopy. The necessary 2Li+/Sr2+ substitution is enabled by cation mobility within the hexaboride lattice. The subsequent reaction with water results in Li2B6 decomposition and the release of <100 nm SrB6 nanoparticles, which were characterized by PXRD, solid-state 11B and 7Li NMR, and high-resolution TEM. This chemistry opens new solution-based modification and processing options for metal borides.
Keyphrases
  • solid state
  • electron microscopy
  • high resolution
  • ion batteries
  • magnetic resonance imaging
  • magnetic resonance
  • walled carbon nanotubes